
ISSN NO: 9726-001X                                                            

Volume 12 Issue 01 Jan 2024 

 

EMPOWERING DEVELOPERS WITH ADVANCED BUG 

PREDICTION MODEL 

 
Mr.Gudala Karunakar1, Swetha2,Sowmya3 ,Vasavi4 

1Assistant Professor, Department of CSE, MallaReddy Engineering College for 

Women, Hyderabad, karun.capri@gmail.com 

2,3,4UG Students, Department of CSE, Malla Reddy Engineering College for Women,  

Hyderabad, TS, India. 

 

ABSTRACT 

 

Several techniques have been proposed to accurately predict software defects. These 

techniques generally exploit characteristics of the code artefacts (e.g., size, complexity, 

etc.) and/or of the process adopted during their development and maintenance (e.g., the 

number of developers working on a component) to spot out components likely 

containing bugs. While these bug prediction models achieve good levels of accuracy, 

they mostly ignore the major role played by human-related factors in the introduction 

of bugs. Previous studies have demonstrated that focused developers are less prone to 

introduce defects than non-focused developers. According to this observation, software 

components changed by focused developers should also be less error prone than 

components changed by less focused developers. We capture this observation by 

measuring the scattering of changes performed by developers working on a component 

and use this information to build a bug prediction model. Such a model has been 

evaluated on 26 systems and compared with four competitive techniques. The achieved 

results show the superiority of our model, and its high complementarily with respect to 

predictors commonly used in the literature. Based on this result, we also show the 

results of a “hybrid” prediction model combining our predictors with the existing ones. 

 

I. INTRODUCTION 

Bug prediction techniques are used to identify areas of software systems that are more 

likely to contain bugs. These prediction models represent an important aid when the 

resources available for testing are scarce, since they can indicate where to invest such 

resources. The scientific community has developed several bug prediction models that 

can be roughly classified into two families, based on the information they exploit to 
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discriminate between “buggy” and “clean” code components. The first set of techniques 

exploits product metrics (i.e., metrics capturing intrinsic characteristics of the code 

components, like their size and complexity) [1], [2], [3], [4], [5], while the second one 

focuses on process metrics (i.e., metrics capturing specific aspects of the development 

process, like the frequency of changes performed to code components) [6], [7], [8], [9], 

[10], [11], [12]. While some studies highlighted the superiority of these latter with 

respect to the product metric based techniques [7], [13], [11] there is a general 

consensus on the fact that no technique is the best in all contexts [14], [15]. For this 

reason, the research community is still spending effort in investigating under which 

circumstances and during which coding activities developers tend to introduce bugs 

(see e.g., [16], [17], [18], [19], [20], [21], [22]). Some of these studies have highlighted 

the central role played by developer-related factors in the introduction of bugs.In 

particular, Eyolfson et al. [17] showed that more experienced developers tend to 

introduce less faults in software systems. Rahman and Devanbu [18] partly contradicted 

the study by Eyolfson et al. by showing that the experience of a developer has no clear 

link with the bug introduction. Bird et al. [20] found that high levels of ownership are 

associated with fewer bugs. Finally, Posnett et al. [22] showed that focused developers 

(i.e., developers focusing their attention on a specific part of the system) introduce 

fewer bugs than unfocused developers. Although such studies showed the potential of 

human-related factor sin bug prediction,thisinformation is not captured in state-of-the-

art bug prediction models based on process metrics extracted from version history. 

Indeed, previous bug prediction models exploit predictors based on (i) the number of 

developers working on a code component [9] [10]; (ii) the analysis of changeproneness 

[13] [11] [12]; and (iii) the entropy of changes [8]. Thus, despite the previously 

discussed finding by Posnett et al. [22], none of the proposed bug prediction models 

considers how focused the developers performing changes are and how scattered these 

changes are. In our previous work [23] we studied the role played by scattered changes 

in bug prediction. We defined two measures, namely the developer’s structural and 

semantic scattering. The first assesses how “structurally far” in the software project the 

code components modified by a developer in a given time period are.The “structural 

distance” between two code components is measured as the number of subsystems one 

needs to cross in order to reach one component from the other. The second measure 

(i.e., the semantic scattering) is instead meant to capture how much spread in terms of 

implemented responsibilities the code components modified by a developer in a given 
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time period are. The conjecture behind the proposed metrics is that high levels of 

structural and semantic scattering make the developer more error-prone. To verify this 

conjecture, we built two predictors exploiting the proposed measures, and we used them 

in a bug prediction model. The results achieved on five software systems showed the 

superiority of our model with respect to (i) the Basic Code Change Model (BCCM) 

built using the entropy of changes [8] and (ii) a model using the number of developers 

working on a code component as predictor [9] [10]. Most importantly, the two 

scattering measures showed a high degree of complementarity with the measures 

exploited by the baseline prediction models. In this paper, we extend our previous work 

[23] to further investigate the role played by scattered changes in bug prediction. In 

particular we: 1) Extend the empirical evaluation of our bug prediction model by 

considering a set of 26 systems. 2) Compare our model with two additional competitive 

approaches, i.e., a prediction model based on the focus metrics proposed by Posnett et 

al. [22] and a prediction model based on structural code metrics [24], that together with 

the previously considered models, i.e., the BCCM proposed by Hassan [8] and the one 

proposed by Ostrand et al. [9] [10], lead to a total of four different baselines considered 

in our study. 3) Devise and discuss the results of a hybrid bug prediction model, based 

on the best combination of predictors exploited by the five prediction models 

experimented in the paper. 4) Provide a comprehensive replication package [25] 

including all the raw data and working data sets of our studies. The achieved results 

confirm the superiority of our model, achieving a F-Measure 10.3% higher, on average, 

than the change entropy model [8], 53.7% higher, on average, with respect to what 

achieved by exploiting the number of developers working on a code component as 

predictor [9], 13.3% higher, on average, than the FMeasure obtained by using the 

developers’ focus metric by Posnett et al. [22] as predictor, and 29.3% higher, on 

average, with respect to the prediction model built on top of product metrics [1]. The 

two scattering measures confirmed their complementarity with the metrics used by the 

alternative prediction models. Thus, we devised a “hybrid”model providing an average 

boost inprediction accuracy (i.e., F-Measure) of +5% with respect to the best 

performing model (i.e., the one proposed in this paper).Structure of the paper. Section 

2 discusses the related literature, while Section 3 presents the proposed scattering 

measures. Section 4 presents the design of our empirical study and provides details 

about the data extraction process and analysis method. Section 5 reports the results of 
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the study, while Section 6 discusses the threats that could affect their validity. Section 

7 concludes the paper. 

II. LITERATURE REVIEW 

A Developer Centered Bug Prediction Model, Dario Di Nucci; Fabio 

Palomba; Giuseppe De Rosa; Gabriele Bavota; Rocco Oliveto; Andrea De Lucia 

Several techniques have been proposed to accurately predict software defects. These 

techniques generally exploit characteristics of the code artefacts (e.g., size, complexity, 

etc.) and/or of the process adopted during their development and maintenance (e.g., the 

number of developers working on a component) to spot out components likely 

containing bugs. While these bug prediction models achieve good levels of accuracy, 

they mostly ignore the major role played by human-related factors in the introduction 

of bugs. Previous studies have demonstrated that focused developers are less prone to 

introduce defects than non-focused developers. According to this observation, software 

components changed by focused developers should also be less error prone than 

components changed by less focused developers. We capture this observation by 

measuring the scattering of changes performed by developers working on a component 

and use this information to build a bug prediction model. Such a model has been 

evaluated on 26 systems and compared with four competitive techniques. The achieved 

results show the superiority of our model, and its high complementarity with respect to 

predictors commonly used in the literature. Based on this result, we also show the 

results of a “hybrid” prediction model combining our predictors with the existing ones. 

 

III.EXISTING SYSTEM  

➢ The Chidamber and Kemerer (CK) metrics [36] have been widely used in the 

context of bug prediction. Basili et al. [1] investigated the usefulness of the CK 

suite for predicting the probability of detecting faulty classes. They showed that 

five of the experimented metrics are actually useful in characterizing the bug-

proneness of classes.  

 

➢ The same set of metrics has been successfully exploited in the context of bug 

prediction by El Emam et al. [26] and Subramanyam et al. [27]. Both works 

https://ieeexplore.ieee.org/author/37085755880
https://ieeexplore.ieee.org/author/38252643400
https://ieeexplore.ieee.org/author/38252643400
https://ieeexplore.ieee.org/author/37075270500
https://ieeexplore.ieee.org/author/37598376400
https://ieeexplore.ieee.org/author/37265274900
https://ieeexplore.ieee.org/author/37265266000
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reported the ability of the CK metrics in predicting buggy code components, 

regardless of the size of the system under analysis. 

 

➢ Ohlsson et al. [3] focused the attention on the use of design metrics to identify bug-

prone modules. They performed a study on an Ericsson industrial system showing 

that at least four different design metrics can be used with equivalent results. The 

metrics performance are not statistically worse than those achieved using a model 

based on the project size.  

 

➢ Zhou et al. [29] confirmed their results showing that size-based models seem to 

perform as well as those based on CK metrics except than the Weighted Method 

per Class on some releases of the Eclipse system. Thus, although Bell et al. [35] 

showed that more complex metric-based models have more predictive power with 

respect to size-based models, the latter seem to be generally useful for bug 

prediction. 

Disadvantages 

1. There is no Product and process metrics Technique in this system. 

2. There is no technique called Structural scattering to find bugs effectively. 

 

IV.PROPOSED SYSTEM  

➢ The Proposed system is extended the empirical evaluation of our bug prediction  

model by considering a set of 26 systems. 

➢ Compare our model with two additional competitive  approaches, i.e., a  

 prediction model based  on the focus metrics proposed by Posnett et al. [22] and a 

prediction model based on structural code metrics [24], that together with the 

previously considered models, i.e., the BCCM proposed by Hassan [8] and the one 

proposed by Ostrand et al. [9] [10], lead to a total of four different baselines 

considered in our study. 

➢ Devise and discuss the results of a hybrid bug prediction model, based on the    

best combination of predictors exploited by the five prediction models   

experimented in the paper. 

➢ Provide a comprehensive replication package [25]  including all the raw data  

 and working data sets of our studies. 

Advantages 
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1. This system implements Research Questions and Baseline Selection which is 

effective in fining bigs. 

2. The system has a technique to Detect bugs of Mining Software Repositories. 

 

 

 

 

Fig1: Architecture diagram 

 

V.MODULES 

Admin 

In this module, the Admin has to login by using valid user name and password. After 

login successful he can do some operations such as View all Project Developers and 

Authorize, View all Managers and Authorize, View all Team Members based on project, 

View all Bugs details from team members and manager and given solution with req 

date and res date , View number of time occures same Bug for a project and give 

link to show in Chart, View No.Of team members for each project assigned in Chart. 
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View and Authorize Users 

In this module, the admin can view the list of users who all registered. In this, the admin 

can view the user’s details such as, user name, email, address and admin authorizes the 

users. 

Manager 

In this module, there are n numbers of managers are present. Manager should register 

before doing any operations. Once manager registers, their details will be stored to the 

database.  After registration successful, he has to login by using authorized user name 

and password. Once Login is successful manager will do some operations like View all 

Team Members based on project, Add Projects with Project name and start date and 

end date,expected date, View all employees and select emp to Add Project, View all 

added project details and give edit option(proj desc,proj module name,Add Proj Sub 

modules), View all team members defects and give solution or allote to other team 

members, Add extension dates for the project to deliver, View all projects status from 

team members, View all  complexity of the project while developing. 

Project Developers 

In this module, there are n numbers of users are present. User should register before 

doing any operations. Once user registers, their details will be stored to the database.  

After registration successful, he has to login by using authorized user name and 

password. Once Login is successful user will do some operations like View Your 

Profile with company Name,View all Assigned Projects with all details,Set defects and 

send to corresponding team member,Set defects and send to corresponding team 

manager,view all solutions based on team member and team manager,View all projects 

and select your projects to show the status like 

Open,closed,Completed,Withdrawn ,View all team members defects and give 

solution,View all assigned Projects extension details, add complexity of the project 

while developing. 

 

VI.CONCLUSION  

A lot of effort has been devoted in the last decade to analyze the influence of the 

development process on the likelihood of introducing bugs. Several empirical studies 

have been carried out to assess under which circumstances and during which coding 

activities developers tend to introduce bugs. In addition, bug prediction techniques built 



ISSN NO: 9726-001X                                                            

Volume 12 Issue 01 Jan 2024 

 

on top of process metrics have been proposed. However, changes in source code are 

made by developers that often work under stressing conditions due to the need of 

delivering their work as soon as possible. The role of developer-related factors in the 

bug prediction field is still a partially explored area. This paper makes a further step 

ahead, by studying the role played by the developer’s scattering in bug 

prediction.Specifically, we defined two measures that consider the amount of code 

components a developer modifies in a given time period and how these components are 

spread structurally (structural scattering) and in terms of the responsibilities they 

implement (semantic scattering). The defined measures have been evaluated as bug 

predictors in an empirical study performed on 26 open source systems. In particular, 

we built a prediction model exploiting our measures and compared its prediction 

accuracy with four baseline techniques exploiting process metrics as predictors. The 

achieved results showed the superiority of our model and its high level of 

complementarity with respect to the considered competitive techniques. We also built 

and experimente da“hybrid”predictionmodel on top of the eleven predictors exploited 

by the five competitive techniques. The achieved results show that (i) the “hybrid” is 

able to achieve a higher accuracy with respect to each of the five models taken in 

isolation, and (ii) the predictors proposed in this paper play a major role in the best 

performing “hybrid” prediction models. Our future research agenda includes a deeper 

investigation of the factors causing scattering to developers, and negatively impacting 

their ability of dealing with code change tasks. We plan to reach such an objective by 

performing a large survey with industrial and open source developers. We also plan to 

apply our technique at different levels of granularity, to verify if we can point out buggy 

code components at a finer granularity level (e.g., methods). 
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