
ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

EMPOWERING DEVELOPERS WITH ADVANCED BUG

PREDICTION MODEL

Mr.Gudala Karunakar1, Swetha2,Sowmya3 ,Vasavi4

1Assistant Professor, Department of CSE, MallaReddy Engineering College for

Women, Hyderabad, karun.capri@gmail.com

2,3,4UG Students, Department of CSE, Malla Reddy Engineering College for Women,

Hyderabad, TS, India.

ABSTRACT

Several techniques have been proposed to accurately predict software defects. These

techniques generally exploit characteristics of the code artefacts (e.g., size, complexity,

etc.) and/or of the process adopted during their development and maintenance (e.g., the

number of developers working on a component) to spot out components likely

containing bugs. While these bug prediction models achieve good levels of accuracy,

they mostly ignore the major role played by human-related factors in the introduction

of bugs. Previous studies have demonstrated that focused developers are less prone to

introduce defects than non-focused developers. According to this observation, software

components changed by focused developers should also be less error prone than

components changed by less focused developers. We capture this observation by

measuring the scattering of changes performed by developers working on a component

and use this information to build a bug prediction model. Such a model has been

evaluated on 26 systems and compared with four competitive techniques. The achieved

results show the superiority of our model, and its high complementarily with respect to

predictors commonly used in the literature. Based on this result, we also show the

results of a “hybrid” prediction model combining our predictors with the existing ones.

I. INTRODUCTION

Bug prediction techniques are used to identify areas of software systems that are more

likely to contain bugs. These prediction models represent an important aid when the

resources available for testing are scarce, since they can indicate where to invest such

resources. The scientific community has developed several bug prediction models that

can be roughly classified into two families, based on the information they exploit to

mailto:karun.capri@gmail.com

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

discriminate between “buggy” and “clean” code components. The first set of techniques

exploits product metrics (i.e., metrics capturing intrinsic characteristics of the code

components, like their size and complexity) [1], [2], [3], [4], [5], while the second one

focuses on process metrics (i.e., metrics capturing specific aspects of the development

process, like the frequency of changes performed to code components) [6], [7], [8], [9],

[10], [11], [12]. While some studies highlighted the superiority of these latter with

respect to the product metric based techniques [7], [13], [11] there is a general

consensus on the fact that no technique is the best in all contexts [14], [15]. For this

reason, the research community is still spending effort in investigating under which

circumstances and during which coding activities developers tend to introduce bugs

(see e.g., [16], [17], [18], [19], [20], [21], [22]). Some of these studies have highlighted

the central role played by developer-related factors in the introduction of bugs.In

particular, Eyolfson et al. [17] showed that more experienced developers tend to

introduce less faults in software systems. Rahman and Devanbu [18] partly contradicted

the study by Eyolfson et al. by showing that the experience of a developer has no clear

link with the bug introduction. Bird et al. [20] found that high levels of ownership are

associated with fewer bugs. Finally, Posnett et al. [22] showed that focused developers

(i.e., developers focusing their attention on a specific part of the system) introduce

fewer bugs than unfocused developers. Although such studies showed the potential of

human-related factor sin bug prediction,thisinformation is not captured in state-of-the-

art bug prediction models based on process metrics extracted from version history.

Indeed, previous bug prediction models exploit predictors based on (i) the number of

developers working on a code component [9] [10]; (ii) the analysis of changeproneness

[13] [11] [12]; and (iii) the entropy of changes [8]. Thus, despite the previously

discussed finding by Posnett et al. [22], none of the proposed bug prediction models

considers how focused the developers performing changes are and how scattered these

changes are. In our previous work [23] we studied the role played by scattered changes

in bug prediction. We defined two measures, namely the developer’s structural and

semantic scattering. The first assesses how “structurally far” in the software project the

code components modified by a developer in a given time period are.The “structural

distance” between two code components is measured as the number of subsystems one

needs to cross in order to reach one component from the other. The second measure

(i.e., the semantic scattering) is instead meant to capture how much spread in terms of

implemented responsibilities the code components modified by a developer in a given

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

time period are. The conjecture behind the proposed metrics is that high levels of

structural and semantic scattering make the developer more error-prone. To verify this

conjecture, we built two predictors exploiting the proposed measures, and we used them

in a bug prediction model. The results achieved on five software systems showed the

superiority of our model with respect to (i) the Basic Code Change Model (BCCM)

built using the entropy of changes [8] and (ii) a model using the number of developers

working on a code component as predictor [9] [10]. Most importantly, the two

scattering measures showed a high degree of complementarity with the measures

exploited by the baseline prediction models. In this paper, we extend our previous work

[23] to further investigate the role played by scattered changes in bug prediction. In

particular we: 1) Extend the empirical evaluation of our bug prediction model by

considering a set of 26 systems. 2) Compare our model with two additional competitive

approaches, i.e., a prediction model based on the focus metrics proposed by Posnett et

al. [22] and a prediction model based on structural code metrics [24], that together with

the previously considered models, i.e., the BCCM proposed by Hassan [8] and the one

proposed by Ostrand et al. [9] [10], lead to a total of four different baselines considered

in our study. 3) Devise and discuss the results of a hybrid bug prediction model, based

on the best combination of predictors exploited by the five prediction models

experimented in the paper. 4) Provide a comprehensive replication package [25]

including all the raw data and working data sets of our studies. The achieved results

confirm the superiority of our model, achieving a F-Measure 10.3% higher, on average,

than the change entropy model [8], 53.7% higher, on average, with respect to what

achieved by exploiting the number of developers working on a code component as

predictor [9], 13.3% higher, on average, than the FMeasure obtained by using the

developers’ focus metric by Posnett et al. [22] as predictor, and 29.3% higher, on

average, with respect to the prediction model built on top of product metrics [1]. The

two scattering measures confirmed their complementarity with the metrics used by the

alternative prediction models. Thus, we devised a “hybrid”model providing an average

boost inprediction accuracy (i.e., F-Measure) of +5% with respect to the best

performing model (i.e., the one proposed in this paper).Structure of the paper. Section

2 discusses the related literature, while Section 3 presents the proposed scattering

measures. Section 4 presents the design of our empirical study and provides details

about the data extraction process and analysis method. Section 5 reports the results of

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

the study, while Section 6 discusses the threats that could affect their validity. Section

7 concludes the paper.

II. LITERATURE REVIEW

A Developer Centered Bug Prediction Model, Dario Di Nucci; Fabio

Palomba; Giuseppe De Rosa; Gabriele Bavota; Rocco Oliveto; Andrea De Lucia

Several techniques have been proposed to accurately predict software defects. These

techniques generally exploit characteristics of the code artefacts (e.g., size, complexity,

etc.) and/or of the process adopted during their development and maintenance (e.g., the

number of developers working on a component) to spot out components likely

containing bugs. While these bug prediction models achieve good levels of accuracy,

they mostly ignore the major role played by human-related factors in the introduction

of bugs. Previous studies have demonstrated that focused developers are less prone to

introduce defects than non-focused developers. According to this observation, software

components changed by focused developers should also be less error prone than

components changed by less focused developers. We capture this observation by

measuring the scattering of changes performed by developers working on a component

and use this information to build a bug prediction model. Such a model has been

evaluated on 26 systems and compared with four competitive techniques. The achieved

results show the superiority of our model, and its high complementarity with respect to

predictors commonly used in the literature. Based on this result, we also show the

results of a “hybrid” prediction model combining our predictors with the existing ones.

III.EXISTING SYSTEM

➢ The Chidamber and Kemerer (CK) metrics [36] have been widely used in the

context of bug prediction. Basili et al. [1] investigated the usefulness of the CK

suite for predicting the probability of detecting faulty classes. They showed that

five of the experimented metrics are actually useful in characterizing the bug-

proneness of classes.

➢ The same set of metrics has been successfully exploited in the context of bug

prediction by El Emam et al. [26] and Subramanyam et al. [27]. Both works

https://ieeexplore.ieee.org/author/37085755880
https://ieeexplore.ieee.org/author/38252643400
https://ieeexplore.ieee.org/author/38252643400
https://ieeexplore.ieee.org/author/37075270500
https://ieeexplore.ieee.org/author/37598376400
https://ieeexplore.ieee.org/author/37265274900
https://ieeexplore.ieee.org/author/37265266000

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

reported the ability of the CK metrics in predicting buggy code components,

regardless of the size of the system under analysis.

➢ Ohlsson et al. [3] focused the attention on the use of design metrics to identify bug-

prone modules. They performed a study on an Ericsson industrial system showing

that at least four different design metrics can be used with equivalent results. The

metrics performance are not statistically worse than those achieved using a model

based on the project size.

➢ Zhou et al. [29] confirmed their results showing that size-based models seem to

perform as well as those based on CK metrics except than the Weighted Method

per Class on some releases of the Eclipse system. Thus, although Bell et al. [35]

showed that more complex metric-based models have more predictive power with

respect to size-based models, the latter seem to be generally useful for bug

prediction.

Disadvantages

1. There is no Product and process metrics Technique in this system.

2. There is no technique called Structural scattering to find bugs effectively.

IV.PROPOSED SYSTEM

➢ The Proposed system is extended the empirical evaluation of our bug prediction

model by considering a set of 26 systems.

➢ Compare our model with two additional competitive approaches, i.e., a

 prediction model based on the focus metrics proposed by Posnett et al. [22] and a

prediction model based on structural code metrics [24], that together with the

previously considered models, i.e., the BCCM proposed by Hassan [8] and the one

proposed by Ostrand et al. [9] [10], lead to a total of four different baselines

considered in our study.

➢ Devise and discuss the results of a hybrid bug prediction model, based on the

best combination of predictors exploited by the five prediction models

experimented in the paper.

➢ Provide a comprehensive replication package [25] including all the raw data

 and working data sets of our studies.

Advantages

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

1. This system implements Research Questions and Baseline Selection which is

effective in fining bigs.

2. The system has a technique to Detect bugs of Mining Software Repositories.

Fig1: Architecture diagram

V.MODULES

Admin

In this module, the Admin has to login by using valid user name and password. After

login successful he can do some operations such as View all Project Developers and

Authorize, View all Managers and Authorize, View all Team Members based on project,

View all Bugs details from team members and manager and given solution with req

date and res date , View number of time occures same Bug for a project and give

link to show in Chart, View No.Of team members for each project assigned in Chart.

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

View and Authorize Users

In this module, the admin can view the list of users who all registered. In this, the admin

can view the user’s details such as, user name, email, address and admin authorizes the

users.

Manager

In this module, there are n numbers of managers are present. Manager should register

before doing any operations. Once manager registers, their details will be stored to the

database. After registration successful, he has to login by using authorized user name

and password. Once Login is successful manager will do some operations like View all

Team Members based on project, Add Projects with Project name and start date and

end date,expected date, View all employees and select emp to Add Project, View all

added project details and give edit option(proj desc,proj module name,Add Proj Sub

modules), View all team members defects and give solution or allote to other team

members, Add extension dates for the project to deliver, View all projects status from

team members, View all complexity of the project while developing.

Project Developers

In this module, there are n numbers of users are present. User should register before

doing any operations. Once user registers, their details will be stored to the database.

After registration successful, he has to login by using authorized user name and

password. Once Login is successful user will do some operations like View Your

Profile with company Name,View all Assigned Projects with all details,Set defects and

send to corresponding team member,Set defects and send to corresponding team

manager,view all solutions based on team member and team manager,View all projects

and select your projects to show the status like

Open,closed,Completed,Withdrawn ,View all team members defects and give

solution,View all assigned Projects extension details, add complexity of the project

while developing.

VI.CONCLUSION

A lot of effort has been devoted in the last decade to analyze the influence of the

development process on the likelihood of introducing bugs. Several empirical studies

have been carried out to assess under which circumstances and during which coding

activities developers tend to introduce bugs. In addition, bug prediction techniques built

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

on top of process metrics have been proposed. However, changes in source code are

made by developers that often work under stressing conditions due to the need of

delivering their work as soon as possible. The role of developer-related factors in the

bug prediction field is still a partially explored area. This paper makes a further step

ahead, by studying the role played by the developer’s scattering in bug

prediction.Specifically, we defined two measures that consider the amount of code

components a developer modifies in a given time period and how these components are

spread structurally (structural scattering) and in terms of the responsibilities they

implement (semantic scattering). The defined measures have been evaluated as bug

predictors in an empirical study performed on 26 open source systems. In particular,

we built a prediction model exploiting our measures and compared its prediction

accuracy with four baseline techniques exploiting process metrics as predictors. The

achieved results showed the superiority of our model and its high level of

complementarity with respect to the considered competitive techniques. We also built

and experimente da“hybrid”predictionmodel on top of the eleven predictors exploited

by the five competitive techniques. The achieved results show that (i) the “hybrid” is

able to achieve a higher accuracy with respect to each of the five models taken in

isolation, and (ii) the predictors proposed in this paper play a major role in the best

performing “hybrid” prediction models. Our future research agenda includes a deeper

investigation of the factors causing scattering to developers, and negatively impacting

their ability of dealing with code change tasks. We plan to reach such an objective by

performing a large survey with industrial and open source developers. We also plan to

apply our technique at different levels of granularity, to verify if we can point out buggy

code components at a finer granularity level (e.g., methods).

VII. REFERENCES

 [1] V. Basili, L. Briand, and W. Melo, “A validation of object-oriented design metrics

as quality indicators,” Software Engineering, IEEE Transactions on, vol. 22, no. 10, pp.

751–761, Oct 1996.

 [2] T. Gyim´othy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented

metrics on open source software for fault prediction,” IEEE Transactions on Software

Engineering (TSE), vol. 31, no. 10, pp. 897–910, 2005.

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

[3] N. Ohlsson and H. Alberg, “Predicting fault-prone software modules in telephone

switchess,” Software Engineering, IEEE Transactions on, vol. 22, no. 12, p. 886894,

1996.

 [4] N. Nagappan and T. Ball, “Static analysis tools as early indicators of pre-release

defect density,” in Proceedings of the 27th International Conference on Software

Engineering, ser. ICSE ’05. New York, NY, USA: ACM, 2005, pp. 580–586. [Online].

Available: http://doi.acm.org/10.1145/1062455.1062558

[5] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,” in

Proceedings of the Third International Workshop on Predictor Models in Software

Engineering, ser. PROMISE ’07. Washington, DC, USA: IEEE Computer Society,

2007, pp. 9–. [Online]. Available: http://dx.doi.org/10.1109/PROMISE.2007.10

[6] A. N. Taghi M. Khoshgoftaar, Nishith Goel and J. McMullan, “Detection of

software modules with high debug code churn in a very large legacy system,” in

Software Reliability Engineering. IEEE, 1996, pp. 364–371.

 [7] J. S. M. Todd L. Graves, Alan F. Karr and H. P. Siy, “Predicting fault incidence

using software change history,” Software Engineering, IEEE Transactions on, vol. 26,

no. 7, pp. 653–661, 2000.

 [8] A. E. Hassan, “Predicting faults using the complexity of code changes,” in ICSE.

Vancouver, Canada: IEEE Press, 2009, pp. 78–88.

[9] R. Bell, T. Ostrand, and E. Weyuker, “The limited impact of individual developer

data on software defect prediction,” Empirical Software Engineering, vol. 18, no. 3, pp.

478–505, 2013. [Online]. Available: http://dx.doi.org/10.1007/s10664-011-9178-4

[10] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Programmer-based fault prediction,”

in Proceedings of the 6th International Conference on Predictive Models in Software

Engineering, ser. PROMISE ’10. New York, NY, USA: ACM, 2010, pp. 19:1–19:10.

[Online]. Available: http://doi.acm.org/10.1145/1868328.1868357

[11] R. Moser, W. Pedrycz, and G. Succi, “Analysis of the reliability of a subset of

change metrics for defect prediction,” in Proceedings of the Second ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement, ser.

http://doi.acm.org/10.1145/1062455.1062558
http://dx.doi.org/10.1109/PROMISE.2007.10
http://dx.doi.org/10.1007/s10664-011-9178-4
http://doi.acm.org/10.1145/1868328.1868357

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

ESEM ’08. New York, NY, USA: ACM, 2008, pp. 309–311. [Online]. Available:

http://doi.acm.org/10.1145/1414004.1414063

 [12] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Does measuring code change

improve fault prediction?” in Proceedings of the 7th International Conference on

Predictive Models in Software Engineering, ser. Promise ’11. New York, NY, USA:

ACM, 2011, pp. 2:1–2:8. [Online]. Available:

http://doi.acm.org/10.1145/2020390.2020392

[13] W. P. Raimund Moser and G. Succi, “A comparative analysis of the efficiency of

change metrics and static code attributes for defect prediction,” in International

Conference on Software Engineering (ICSE), ser. ICSE ’08, 2008, pp. 181–190.

[14] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict component

failures,” in Proceedings of the 28th International Conference on Software Engineering,

ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp. 452–461. [Online]. Available:

http: //doi.acm.org/10.1145/1134285.1134349 [15] M. DAmbros, M. Lanza, and R.

Robbes, “Evaluating defect prediction approaches: a benchmark and an extensive

comparison,” Empirical Software Engineering, vol. 17, no. 4, p. 531577, 2012.

[16] J. Sliwerski, T. Zimmermann, and A. Zeller, “Don’t program on fridays! how to

locate fix-inducing changes,” in Proceedings of the 7th Workshop Software

Reengineering, May 2005.

[17] L. T. Jon Eyolfso and P. Lam, “Do time of day and developer experience affect

commit bugginess?” in Proceedings of the 8th Working Conference on Mining

Software Repositories, ser. MSR ’11, 2011, pp. 153–162.

[18] F. Rahman and P. Devanbu, “Ownership, experience and defects: a fine-grained

study of authorship,” in Proceedings of the 33rd International Conference on Software

Engineering, ser. ICSE ’11, 2011, pp. 491–500.

[19] E. J. W. J. Sunghun Kim and Y. Zhang, “Classifying software changes: Clean or

buggy?” IEEE Transactions on Software Engineering (TSE), vol. 34, no. 2, pp. 181–

196, 2008.

[20] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch my

code!: Examining the effects of ownership on software quality,” in Proceedings of the

http://doi.acm.org/10.1145/1414004.1414063
http://doi.acm.org/10.1145/2020390.2020392

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations

of Software Engineering, ser. ESEC/FSE ’11. ACM, 2011, pp. 4–14.

 [21] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and O. Strollo,

“When does a refactoring induce bugs? an empirical study,” in Proceedings of the 12th

International Working Conference on Source Code Analysis and Manipulation, ser.

SCAM ’12, 2012, pp. 104–113.

[22] D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov, “Dual ecological measures of

focus in software development,” in Proceedings of the 2013 International Conference

on Software Engineering, ser. ICSE ’13. IEEE Press, 2013, pp. 452–461.

[23] D. D. Nucci, F. Palomba, S. Siravo, G. Bavota, R. Oliveto, and A. D. Lucia, “On

the role of developer’s scattered changes in bug prediction,” in Proceedings of the 31st

International Conference on Software Maintenance and Evolution, ICSME ’15,

Bremen, Germany, 2015, pp. 241–250.

[24] V.Basili,G.Caldiera,andD.H.Rombach,TheGoalQuestionMetric Paradigm. John

Wiley and Sons, 1994.

[25] D. D. Nucci, F. Palomba, G. D. Rosa, G. Bavota, R. Oliveto, and A. D. Lucia.

(2016) A developer centered bug prediction model - replication package -

https://figshare.com/articles/A Developer Centered Bug Prediction Model/3435299.

[26] W. M. Khaled El Emam and J. C. Machado, “The prediction of faulty classes using

object-oriented design metrics,” Journal of Systems and Software, vol. 56, no. 1, p.

6375, 2001.

[27] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics for object-

oriented design complexity: Implications for software defects,” Software Engineering,

IEEE Transactions on, vol. 29, no. 4, p. 297310, 2003. [28] A. P. Nikora and J. C.

Munson, “Developing fault predictors for evolving software systems,” in Proceedings

of the 9th IEEE International Symposium on Software Metrics. IEEE CS Press, 2003,

pp. 338–349.

 [29] Y. Zhou, B. Xu, and H. Leung, “On the ability of complexity metrics to predict

fault-prone classes in object-oriented systems,” Journal of Systems and Software, vol.

83, no. 4, pp. 660–674, 2010.

https://

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

 [30] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system

defect density,” in Software Engineering, 2005. ICSE 2005. Proceedings. 27th

International Conference on. IEEE, 2005, pp. 284–292. [31] A. E. Hassan and R. C.

Holt, “Studying the chaos of code development,” in Proceedings of the 10th Working

Conference on Reverse Engineering, 2003.

[32] ——, “The top ten list: dynamic fault prediction,” in Proceedings of the 21st IEEE

International Conference on Software Maintenance, 2005, ser. ICSM ’05. IEEE

Computer Society, 2005, pp. 263–272.

 [33] S. Kim, T. Zimmermann, E. J. Whitehead Jr, and A. Zeller, “Predicting faults

from cached history,” in Proceedings of the 29th international conference on Software

Engineering. IEEE Computer Society, 2007, pp. 489–498.

[34] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and B. Murphy, “Change

bursts as defect predictors,” in Software Reliability Engineering (ISSRE), 2010 IEEE

21st International Symposium on. IEEE, 2010, pp. 309–318.

 [35] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Looking for bugs in all the right

places,” in Proceedings of the 2006 international symposium on Software testing and

analysis. ACM, 2006, pp. 61–72.

[36] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,”

IEEE Transactions on Software Engineering (TSE), vol. 20, no. 6, pp. 476–493, June

1994.

[37] G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, “Using structural and semantic

measures to improve software modularization,” Empirical Software Engineering, vol.

18, no. 5, pp. 901–932, 2013.

 [38] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval. Addison-

Wesley, 1999.

[39] L. M. Y. Freund, “The alternating decision tree learning algorithm,” in Proceeding

of the Sixteenth International Conference on Machine Learning, 1999, pp. 124–133.

[40] R. Kohavi, “The power of decision tables,” in 8th European Conference on

Machine Learning. Springer, 1995, pp. 174–189.

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

 [41] S. le Cessie and J. van Houwelingen, “Ridge estimators in logistic regression,”

Applied Statistics, vol. 41, no. 1, pp. 191–201, 1992.

[42] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms. Spartan Books, 1961.

 [43] G. H. John and P. Langley, “Estimating continuous distributions in bayesian

classifiers,” in Eleventh Conference on Uncertainty in Artificial Intelligence. San Mateo:

Morgan Kaufmann, 1995, pp. 338–345.

 [44] T. Menzies, B. Caglayan, Z. He, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan.

(2012, June) The promise repository of empirical software engineering data. [Online].

Available: http://promisedata.googlecode.com

 [45] J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?” in

Proceedings of the 2005 International Workshop on Mining Software Repositories,

MSR 2005. ACM, 2005.

[46] L. Moonen, “Generating robust parsers using island grammars,” in Reverse

Engineering, 2001. Proceedings. Eighth Working Conference on, 2001, pp. 13–22.

[47]R.KohaviandG.H.John,“Wrappersforfeaturesubsetselection,” Artif. Intell., vol. 97,

no. 1-2, pp. 273–324, Dec. 1997. [Online]. Available: http://dx.doi.org/10.1016/S0004-

3702(97)00043-X

[48] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen, and E. R. Gansner, “Using

automatic clustering to produce high-level system organizations of source code,” in

Proccedings of 6th International Workshop on Program Comprehension. Ischia, Italy:

IEEE CS Press, 1998.

[49] W. J. Conover, Practical Nonparametric Statistics, 3rd ed. Wiley, 1998. [50] R. J.

Grissom and J. J. Kim, Effect sizes for research: A broad practical approach, 2nd ed.

Lawrence Earlbaum Associates, 2005.

[51] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P. Devanbu,

“Fair and balanced?: Bias in bug-fix datasets,” in Proceedings of the the 7th Joint

Meeting of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on The Foundations of Software Engineering, ser. ESEC/FSE ’09. New

http://promisedata.googlecode.com/
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://dx.doi.org/10.1016/S0004-3702(97)00043-X

ISSN NO: 9726-001X

Volume 12 Issue 01 Jan 2024

York, NY, USA: ACM, 2009, pp. 121–130. [Online]. Available:

http://doi.acm.org/10.1145/1595696.1595716

[52] K. Herzig and A. Zeller, “The impact of tangled code changes,” in Proceedings of

the 10th Working Conference on Mining Software Repositories, MSR ’13, San

Francisco, CA, USA, May 18-19, 2013, 2013, pp. 121–130.

[53] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “The evolution

of project inter-dependencies in a software ecosystem: The case of apache,” in Software

Maintenance (ICSM), 2013 29th IEEE International Conference on, Sept 2013, pp.

280–289.

[54] I. Jolliffe, Principal Component Analysis. John Wiley & Sons, Ltd, 2005. [Online].

Available: http://dx.doi.org/10.1002/0470013192. bsa501

 [55] P. A. Devijver and J. Kittler, Pattern Recognition: A Statistical

http://doi.acm.org/10.1145/1595696.1595716
http://dx.doi.org/10.1002/0470013192

